Shrinkage Estimation Of Incomplete RegressionModels

نویسندگان

  • H. Toutenburg
  • V. K. Srivastava
  • A. Fieger
چکیده

The problem of estimating the coeecients in a linear regression model is considered when some of the response values are missing. The conventional Yates procedure employing least squares predictions for missing values does not lead to any improvement over the least squares estimator using complete observations only. However, if we use Stein-rule predictions , it is demonstrated that some improvement can be achieved. An unbiased estimator of the mean squared error matrix of the proposed esti-mator of coeecient vector is also presented. Some work on the application of the proposed estimation procedure to real-world data sets involving some discrete variables in the set of explanatory variables is under way and will be reported in future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

E-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function

‎Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...

متن کامل

Shrinkage Preliminary Test Estimation under a Precautionary Loss Function with Applications on Records and Censored Ddata

Shrinkage preliminary test estimation in exponential distribution under a precautionary loss function is considered. The minimum risk-unbiased estimator is derived and some shrinkage preliminary test estimators are proposed. We apply our results on censored data and records. The relative efficiencies of proposed estimators with respect to the minimum ‎risk-unbiased‎&...

متن کامل

Positive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications

Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...

متن کامل

Classic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data

Introduction      In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice,  the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...

متن کامل

Improved Estimation in Rayleigh type-II Censored Data under a Bounded Loss Utilizing a Point Guess Value

‎The problem of shrinkage testimation (test-estimation) for the Rayleigh scale‎ ‎parameter θ based on censored samples under the reflected‎ ‎gamma loss function is considered‎. We obtain the minimum risk‎ ‎estimator among a subclass and compute its risk‎. ‎A shrinkage‎ ‎testimator based on acceptance or rejection of a null hypothesis&lr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007